Approaching Privacy in ITS

Caitlin Cottrill
IGERT Seminar
21 March 2007
Overview

• Background
• Emerging Issues
• Current Practice
• Recent Approaches
• Next Steps
Approaches to Traffic Forecasting/Modeling

• Static:
 – Travel surveys (on-boards and household)
 – Historical data

• Dynamic:
 – GPS
 – Road sensors (inductive loop detectors, etc.)
Emerging Method

• Combined Static/Dynamic approach:
 – More consistent and accurate trip reporting;
 – More accurate reporting of non-auto trips;
 – Data gathered on specific routes; and
 – Ability to compare real-time data to historic data to ensure reliability.
Emerging Privacy Issues

• Though privacy may be maintained at the individual levels (survey or GPS) in the combined approach, this does not ensure that combined data will maintain expected levels of confidentiality.
• With additional data mining and data linkages (ex. Census), it may be possible to more clearly identify individual travelers or households.
Current Practices in Privacy Protection

• Census: Title 13
 – Requires that “any information collected from the public under the authority of Title 13 be maintained as confidential”
 • Suppression
 • Data swapping
 • Protection of microdata files
Current Practices in Privacy Protection (cont.)

• ITSA Fair Information and Privacy Principles
 – Advisory policy adopted in 2001
 – Some key requirements:
 • Individual Centered
 • Relevant
 • Anonymity
 • Commercial or other secondary use
Some Recent Approaches to Addressing Privacy in ITS

• Traffic monitoring with probe vehicles (Hoh, et al.):
 – Issue:
 • Maintain both data integrity and privacy
 – Proposed solution:
 • Architecture assigns authentication of data and filtering to one entity and actual data analysis to a separate entity.
 – Remaining issues:
 • Depending upon the frequency of probe updates, a clustering analysis may still allow an individual’s home or other destination location to be determined.
Some Recent Approaches to Addressing Privacy in ITS

• Privacy Issues in Vehicular Ad Hoc Networks (Dötzer):
 – Issue:
 • Is identification necessary in VANETS, or only a guarantee that the sender is valid/trustworthy?
 – Proposed solution:
 • Utilize a trusted third party to store identities and map one or more pseudonyms and related credentials to each identity. When sending messages, the vehicle will send a pseudonym and credentials to be verified by the receiving entity.
 – Remaining issues:
 • How often would pseudonyms need to be changed to maintain privacy?
 • What are the data use restrictions on the trusted third party?
Some Recent Approaches to Addressing Privacy in ITS

• Adaptive privacy preserving authentication in vehicular networks (Sha, et al.):
 – Issue:
 • How can the level of privacy desired be specified by the user?
 – Proposed solution:
 • Utilization of an adaptive group-based protocol that is able to trade off the degree of privacy desired with necessary resource usage.
 – Remaining issues:
 • Accurately identifying the group size needed to ensure privacy.
 • Maintaining a reasonable balance between privacy and resource usage.
However…

• The methods explored above focus their efforts primarily on maintaining privacy within the mobile network.

• This still leaves the need to ensure that data archives will maintain privacy standards, even when linked with data from travel surveys or the Census.
Next Steps for Future Research

• Work towards developing methods for ensuring that privacy is maintained when linking data sources through a combined approach to travel modeling and forecasting.

• Work towards establishing a data model that addresses privacy needs at the user, technology, and policy/political levels.
“If ITS systems are developed and deployed which do not respect the privacy of the American driver, there is a good chance that Americans will demand that the system be shut off. Without strong privacy provisions, ITS will not succeed.”

– S. Garfinkel. “Why driver privacy must be a part of ITS.” 1996.